# Cloud-convection feedback in brown dwarfs atmosphere

#### Maxence Lefèvre, Xianyu Tan, Elsie Lee and Ray Pierrehumbert

maxence.lefevre@physics.ox.ac.uk AOPP, University of Oxford, UK

OWL Summer School 2022



#### Brown dwarfs Observations



 $\sim$  2000 objects

### Mechanism

Fingering convection in  $CH_4/NH_3$  changes thermal structure



Tremblin et al. 2015, 2016, 2017, 2019

Maxence Lefèvre

#### Mechanism





Maxence Lefèvre

#### **Previous studies**

#### Freytag et al (2010) : 2D

#### mt18g50mm00n07 t=180020.1 s



#### **Previous studies**

#### Bordwell et al. (2018) : 3D no clouds



#### Zhang (2020) : 2D MgSiO<sub>3</sub> clouds



#### **Previous studies**

#### Tan et al. (2019) : 1D MgSiO<sub>3</sub> clouds



### Modelling

### TP profiles





#### No clouds, solar metallicity



Convective depth increases with temperature

#### No clouds, solar metallicity



Cell diamemeter and vertical wind increase with temperature

#### Clouds, solar metallicity

4000 K and cloud particle density  $10^8 \text{ kg}^{-1}$  (free parameter)



 $\label{eq:mgSiO_3} \mbox{: strong impact} \\ Fe \mbox{ and } Al_2O_3 \mbox{: impact} \\ CaTiO_3, \mbox{ Cr and } MnS \mbox{: very few impact (small abundance and thin layer)} \\$ 



 $1e^8~kg^{-1}$  and  $1e^9~kg^{-1}$  cases : datached cloud layer  $\rightarrow$  scattering albedo  $1e^7~kg^{-1}$  and  $1e^{10}~kg^{-1}$  cases : small impact  $1e^5~kg^{-1}$  and  $1e^6~kg^{-1}$  cases : limited impact



 $1e^8~kg^{-1}$  and  $1e^9~kg^{-1}$  cases : datached cloud layer  $\rightarrow$  scattering albedo  $1e^7~kg^{-1}$  and  $1e^{10}~kg^{-1}$  cases : small impact  $1e^5~kg^{-1}$  and  $1e^6~kg^{-1}$  cases : limited impact



#### Impact cloud particle number at 4000 K

Cloud holes at low cloud particle density

#### Impact of Temperature at $N_c = 10^8 \text{ kg}^{-1}$



Cloud aggregation at high temperature  $\rightarrow$  larger cloud holes

Maxence Lefèvre

#### Emission spectra



4000 K and 
$${\sf N}_c=10^8~{
m kg^{-1}}$$

Maxence Lefèvre



#### Emission spectra



### Conclusions & Perspectives

- Increase of the convection depth with temperature
- $\bullet\,$  Strong impact of MgSiO\_3 and moderate impact of Fe and Al\_2O\_3
- Limited impact of CaTiO<sub>3</sub>, Cr, MnS
- $\bullet\,$  Strong effect of the particle size, around 1  $\mu{\rm m}$  for most impact
- Detached convective layer for some particle size

#### Next

- Chemistry scheme with Shang-Min Tsai
- Non-grey radiative transfer
- $\bullet \ g = 100 \ m/s^2$
- More sophisticated microphysics : Nucleation, Shape, Distribution

### Model Configuration

## 3D CM1 non-hydrostatic dynamical core coupled with grey RT freedman et al (2014)

| Parameter                                 | Value                                              |
|-------------------------------------------|----------------------------------------------------|
| Gravity (m s <sup><math>-2</math></sup> ) | 1000                                               |
| Heat Capacity (J K $^{-1}$ )              | 13000                                              |
| Mean Molecular mass (g/mol)               | 2.23                                               |
| Surface Pressure (Pa)                     | 3 10 <sup>7</sup>                                  |
| Surface Temperature (K)                   | 3000 <t<sub>s&lt;5000, fixed</t<sub>               |
| Metallicity                               | Solar, 10x Solar                                   |
| Wind shear                                | None                                               |
| Vertical domain                           | up to 1e <sup>3</sup> Pa                           |
| Horizontal domain                         | dx=2 km, 200x200 for 3000 K and 360x360 for 5000 K |
| Boundary condition                        | doubly periodic and sponge layer at the top        |

Lefevre et al A&A 2022

#### Clouds

Considered : MgSiO<sub>3</sub>, Fe, Al<sub>2</sub>O<sub>3</sub>, CaTiO<sub>3</sub>, Cr, MnS Lognormal particle size distribution Free parameter : Number cloud particle density, between N<sub>c</sub>  $10^5$  and  $10^{10}$  kg<sup>-1</sup> Source at the bottom then advected by convection Radiatively active with Rosseland mean coefficient

Settling is present

#### No clouds, solar metallicity



#### Depth increases with temperature

Maxence Lefèvre

4000 K



 $1e^8 kg^{-1}$ - $1e^9 kg^{-1}$  cases : stronger opacities and scattering albedo

Maxence Lefèvre

Convection in brown dwarfs

OWL Summer School 2022 25



Different horizontal organisation to deep convective layer Heating at cloud base too weak for complete convection layer



Number detached layer increase with temperature : increasing scattering albedo

Maxence Lefèvre

#### Fe clouds, solar metallicity



#### 4000 K

#### No Detached convective layer

### Al<sub>2</sub>O<sub>3</sub> clouds, solar metallicity



4000 K

No Detached convective layer

#### Emission spectra

