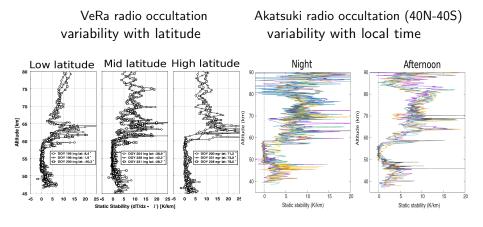
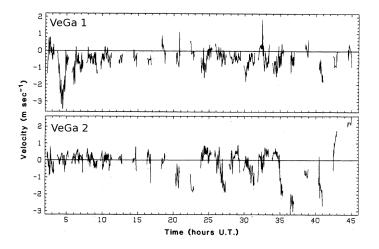
Organization of the convection in the Venus cloud layer

Maxence Lefèvre, Sébastien Lebonnois and Aymeric Spiga


maxence.lefevre@Imd.jussieu.fr Laboratoire de Météorologie Dynamique, Paris, FRANCE

Hokkaido June 3rd 2019

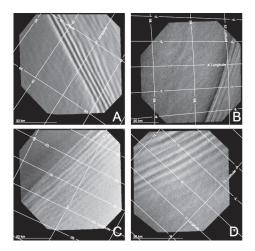
Introduction : Convective layer



Tellmann et al., 2009

Imamura et al., 2017

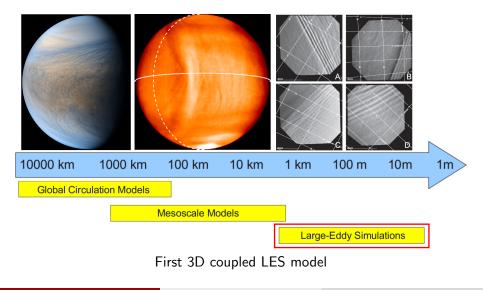
Introduction : Convective layer


VeGa Balloon vertical wind measurement $\sim\pm$ 3 m/s at \pm 7°

Linkin et al., 1986

Introduction : Gravity waves

Venus Express observations at cloud top (\sim 70 km)



Piccialli et al., 2014

Atmospheric Modeling

Atmospheric Modeling

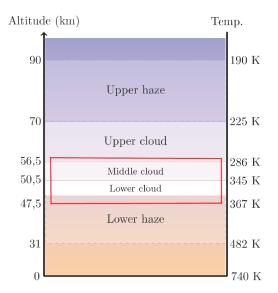
Small-scale turbulence \rightarrow Large-Eddy Simulations (LES) with WRF core

Model description

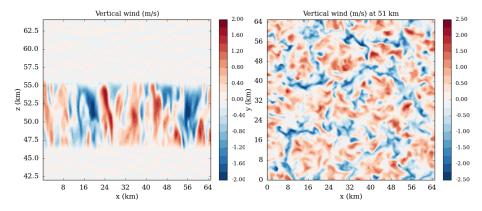
Heating rates decomposed in 3 different contributions :

-2 radiative ones : Solar and IR

- Dynamics: associated with global dynamics : Hadley cell

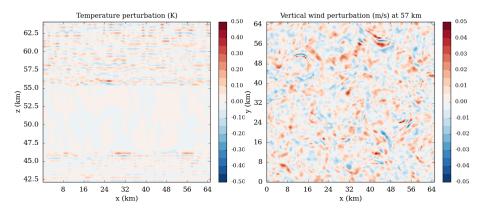

(Adiabatic warming/cooling)

	Off-line (Lefèvre et al., 2017)	On-line (Lefèvre et al., 2018)
Solar	Constant	LMD Venus radiative transfer
IR	Constant	LMD Venus radiative transfer
Dynamics	Constant	Constant
Resolution	200 m	400 m
horizontal domain	36×36 km	60×60 km
vertical level	181	300
vertical domain	40 to 70 km	surface to 100 km


Cloud model (Haus et al.) is fixed during the simulation No wind shear is imposed

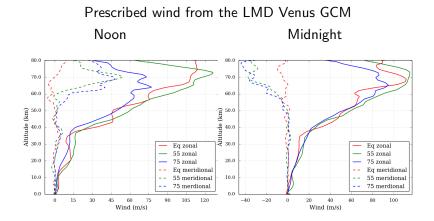
Input from LMD GCM Simulations (Garate-Lopez and Lebonnois, 2018)

Main convective layer


On-line mode

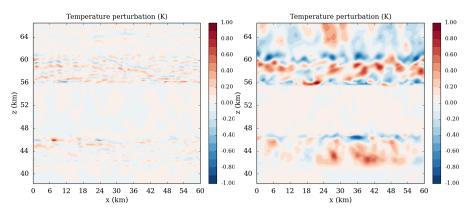
Equator noon

 $\begin{array}{c} \mbox{Lefèvre et al, 2018}\\ \mbox{Vertical wind between } \pm 2.5 \mbox{ m/s, consistent with observations}\\ \mbox{Convective cell of 20 km of diameter} \end{array}$


Equator noon: : Gravity waves

Amplitude of GWs ± 0.5 K, smaller than the observations Circular wavefront, not consistent with observations.

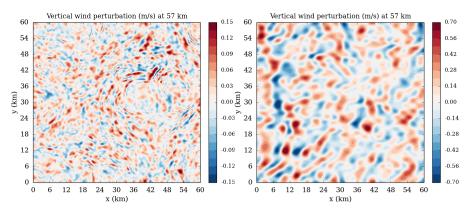
Impact of the wind shear


Wind shear

Comparison : the Equator midnight

No wind shear

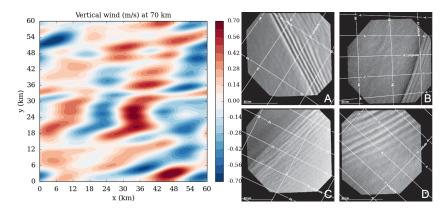
Wind shear


Few impact on convection but strong on GWs Stronger amplitude with the wind shear : obstacle effect

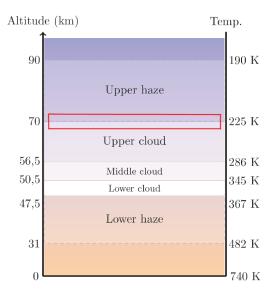
Comparison : the Equator midnight

At 57 km

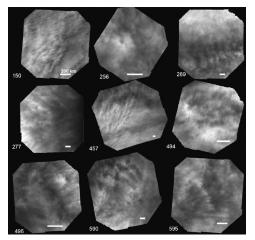
No wind shear


Wind shear

Linear wave front and stronger amplitude

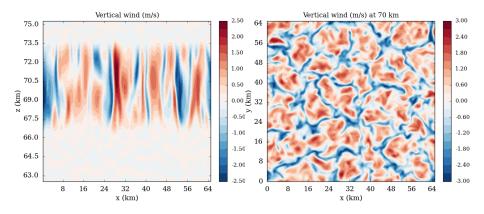

Cloud top gravity waves

At cloud top

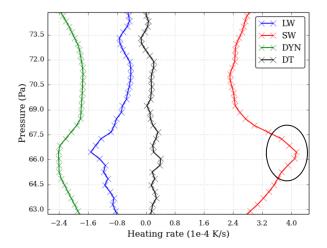

Wavelength up to 20 km. Very close to VMC observations.

Cloud top convective activity

Observations


VMC observations

Titov et al., 2012 Puffy clouds at subsollar point at low latitude : convection ?


Maxence Lefèvre

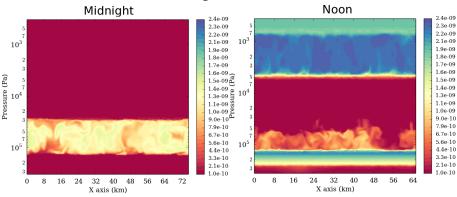
Cloud top convective activity : Equator noon

Vertical wind between $\pm 3 \text{ m/s}$ Convective cell of diameter of 10 km

Cloud top convective activity : Mechanism

Strong solar heating from unknow UV absorber \rightarrow destabilization.

Maxence Lefèvre


Conclusion

- First 3D coupled LES model for Venus
- Fine vertical resolution radiative transfer for realistic convective layer
- Strong impact of the wind shear : generated waves enhanced by obstacle effect
- Convection activity at cloud top due to UV absorber

	Off-line	On-line	On-line with wind shear
Convection morphology	\checkmark	\checkmark	\checkmark
Convection depth	×	\checkmark	\checkmark
Plumes strength	×	\checkmark	\checkmark
Gravity waves amplitude	×	×	\checkmark
Gravity waves morphology	×	×	\checkmark

Perspectives

- Subgrid parametrization : Thermall Plume model and Gravity waves
- Planetary boundary layer turbulence
- Implementation of Photochemistry and Microphysics scheme

SO3 Abundance (Kg/Kg)